Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 398: 133881, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964558

RESUMO

The effect of energetic neutral argon (EAr) atoms on the short and long-term retrogradation was studied, and the retrograded starch was used to prepare bioplastic films for better mechanical and barrier properties. Kithul starch showed higher short and long-term retrogradation after treatment. The EAr atoms treatment increased amylose content and amylose leaching; it facilitated the short-term retrogradation. The more pronounced effect of long-term retrogradation in starch after treatment increased the enthalpy of retrogradation (ΔHR), hardness, and syneresis and decreased the light transmittance and freeze-thaw stability. Bioplastic films made from retrograded starch after EAr atoms treatment exhibited significantly (p ≤ 0.05) higher relative crystallinity; it could be attributed to the higher starch retrogradation after cold plasma treatment. The films of retrograded EAr atoms treated starch showed higher mechanical strength and barrier properties. These results revealed that bioplastic films from retrograded EAr atoms treated starch could potentially substitute the single-use petroleum-based packaging films.


Assuntos
Gases em Plasma , Amido , Amilose , Dureza , Termodinâmica
2.
Toxicon ; 214: 18-29, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35513053

RESUMO

The consumer demand for safe, "healthy," and premium foods, preferably with an extended shelf-life; demand for easy packaging; and choice for more sustainable food packaging have contributed to the development of novel packaging technologies. The application of adequate packaging materials has recently become a major post-harvest challenge concerning the control of fungi and mycotoxin. This review will describe the current antifungal packaging technology involved to prevent the contamination of fungi and mycotoxin, along with the characteristics and mechanism of action in food products. Antifungal packaging has incredible potential in the food packaging sector. The most suitable approach for the safe storage of agricultural produce for farmers is the hermetic packaging technology, which maintains quality while providing a good barrier against fungi and mycotoxin. Furthermore, active antifungal packaging is a viable method for incorporating antifungal agents against pathogenic fungi. Essential oils and organic acid have received more scientific attention due to their increased efficacy against mold growth. Polypeptides, chitosan, and natamycin incorporated in active packaging significantly reduced fungi. Even though nanotechnological advancements in antifungal packaging are promising, safety and regulation issues remain significant concerns.


Assuntos
Micotoxinas , Antifúngicos/farmacologia , Embalagem de Alimentos/métodos , Fungos , Tecnologia
3.
Int J Biol Macromol ; 209(Pt B): 1943-1955, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35500776

RESUMO

In this study, the effect of chemical modifications such as oxidation, esterification and crosslinking was investigated alone and in combination with microwave irradiation on a non-conventional starch with 76% starch yield acquired from the trunk of matured talipot palm. The single- and dual-modifications imparted significant changes in the morphological, crystalline, pasting and rheological properties and digestibility of talipot starch. Characteristic peaks were observed in single- and dual-oxidized, esterified and crosslinked starches indicating their respective functional groups. All modifications significantly decreased (p ≤ 0.05) the relative crystallinity (RC) of talipot starches except for crosslinking, and the least RC (11.33%) was observed in microwave irradiated esterified starch. Microwave irradiation prior to chemical modifications showed a significant impact in the swelling and solubility of talipot starches. The decreased setback viscosity and increased light transmittance in single- and dual-microwave irradiated talipot starches showed their lowered retrogradation tendency, suitable for frozen foods. The resistant starch (RS) content was majorly improved in all heterogeneously dual modified talipot starches by incorporating more functional groups owed to structural and crystalline destruction in starch granules upon microwave irradiation. The highest RS content (45.02%) was observed in microwave irradiated esterified uncooked talipot starch.


Assuntos
Micro-Ondas , Amido , Fenômenos Químicos , Amido Resistente , Solubilidade , Amido/química , Viscosidade
4.
Polymers (Basel) ; 13(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771410

RESUMO

Talipot starch, a non-conventional starch source with a high yield (76%) from the stem pith of talipot palm (Corypha umbraculifera L.) was subjected to three different thermal treatments (dry-heat, heat-moisture and autoclave treatments) prior to phosphorylation. Upon dual modification of starch with thermal treatments and phosphorylation, the phosphorous content and degree of crosslinking significantly increased (p ≤ 0.05) and was confirmed by the increased peak intensity of P=O and P-O-C stretching vibrations compared to phosphorylated talipot starch in the FT-IR spectrum. The highest degree of crosslinking (0.00418) was observed in the autoclave pretreated phosphorylated talipot starch sample. Thermal pretreatment remarkably changed the granule morphology by creating fissures and grooves. The amylose content and relative crystallinity of all phosphorylated talipot starches significantly decreased (p ≤ 0.05) due to crosslinking by the formation of phosphodiester bonds, reducing the swelling power of dual-modified starches. Among all modified starches, dry-heat pretreated phosphorylated starch gel showed an improved light transmittance value of 28.4%, indicating reduced retrogradation tendency. Pasting and rheological properties represented that the thermal pretreated phosphorylated starch formed stronger gels that improved thermal and shear resistance. Autoclave treatment before phosphorylation of talipot starch showed the highest resistant starch content of 48.08%.

5.
Food Res Int ; 147: 110514, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399492

RESUMO

Researchers are continuously discovering varied technologies for microbial control to ensure worldwide food safety from farm-to-fork. The microbial load and virulence of spoilage causing microorganisms, including bacteria, fungi, yeasts, virus, and protozoa, determines the extent of microbial contamination in a food product. Certain pathogenic microbes can cause food poisoning and foodborne diseases, and adversely affect consumers' health. To erade such food safety-related problems, various traditional and novel food processing methods have been adopted for decades. However, some decontamination techniques bring undesirable changes in food products by affecting their organoleptic and nutritional properties. Combining various thermal and non-thermal food processing methods is an effective way to impart a synergistic effect against food spoilage microorganisms and can be used as an alternative way to combat certain limitations of food processing technologies. The combination of different techniques as hurdles put the microorganisms in a hostile environment and disturbs the homeostasis of microorganisms in food temporarily or permanently. Optimization and globalization of these hurdle combinations is an emerging field in the food processing sector. This review gives an overview of recent inventions in hurdle technology for bacterial decontamination, combining different thermal and non-thermal processing techniques in various food products.


Assuntos
Descontaminação , Doenças Transmitidas por Alimentos , Bactérias , Manipulação de Alimentos , Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos/prevenção & controle , Humanos
6.
Int J Biol Macromol ; 182: 554-563, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33848545

RESUMO

Starch from talipot palm trunk (Corypha umbraculifera L.), a new starch source, was treated with different citric acid concentrations (5%, 10%, 20%, and 40% of the dry weight of starch) to produce citrate starch. The influence of citric acid treatment on physicochemical, pasting, structural, thermal, rheological, and digestibility properties of talipot palm starch were studied. A new peak at 1728 cm-1 was observed in the Fourier-transform infrared spectroscopy (FTIR) spectra of citric acid-treated starches, which confirmed the formation of an ester bond between starch molecule and citric acid. The crystalline pattern of talipot palm starch was unaffected by citric acid treatment, whereas the relative crystallinity decreased from 16.35% to 3.06%. The Rapid Visco Analysis of starch treated with citric acid did not show any characteristic peaks, however, the untreated starch showed a peak viscosity of 3646 cP. The gelatinization parameters decreased with an increase in the degree of substitution, and the enthalpy of gelatinization (ΔHgel) decreased from 11.19 J/g to 6.37 J/g. The in-vitro digestibility of talipot palm starch was decreased by citric acid treatment, and that of the slowly digestible starch (SDS) and resistant starches (RS) increased significantly (p ≤ 0.05) from 31.71% to 39.43% and 37.55% to 53.38%, respectively.


Assuntos
Arecaceae/química , Ácido Cítrico/química , Amido Resistente , Temperatura Alta , Hidrólise , Transição de Fase , Reologia
7.
Carbohydr Polym ; 250: 116991, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049903

RESUMO

Kithul starch was treated by EN (energetic neutral nitrogen) atoms at 6 W,12 W and 18 W for 15 min and incorporated lauric acid for the development of starch-lauric acid inclusion complexes. EN atoms treatment significantly (p ≤ 0.05) increased the complex index (CI). Severe morphological alterations on the kithul starch granules by EN atoms treatment enhanced starch-lauric acid complex formation. Relative crystallinity of EN atoms treated lauric acid incorporated kithul starch samples increased with plasma power. Moreover, lower pasting property, storage modulus (G'), loss modulus (G''), hardness and higher Tanδ indicated decrease in gelation and retrogradation property. ENL-18 W showed the lowest complex viscosity (È *). Lauric acid incorporation in EN atoms treated kithul starch reduced in vitro digestibility and significantly (p ≤ 0.05) increased RS (resistant starch). Hence, EN atoms treatment on the kithul starch granules prior to fatty acid incorporation is an effective technique for the development of starch-fatty acid complexes.


Assuntos
Arecaceae/crescimento & desenvolvimento , Ácidos Láuricos/metabolismo , Nitrogênio/metabolismo , Reologia , Amido/metabolismo , Arecaceae/metabolismo , Géis , Ácidos Láuricos/química , Nitrogênio/química , Amido/química , Temperatura
8.
J Food Sci Technol ; 57(8): 2916-2925, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32624597

RESUMO

Effect of hydrothermal modifications (autoclaving, annealing and heat moisture treatment) on physico-chemical, rheological properties and in vitro digestibility of kithul starch was studied. Annealing and heat moisture treatment decreased swelling index, solubility and increased crystalline properties as compared with autoclaving. Autoclaving, annealing and heat moisture treatment caused significant morphological damages such as large holes and fissures on the kithul starch, in addition, granules changed from oval to donut shape. Heat moisture treatment formed higher number of agglomerated starch granules. Light transmittance decreased after hydrothermal modifications. Autoclaving and annealing increased the pasting viscosities (except break down viscosity) of kithul starch. A significant increase (p ≤ 0.05) in peak temperature, conclusion temperature and enthalpy was found in annealed and heat moisture treated kithul starches. The digestibility of kithul starch decreased with increasing resistant starch after annealing and heat moisture treatment. Autoclaved, annealed and heat moisture treated kithul starches exhibited higher value of storage modulus (G') and loss modulus (G″) than native kithul starch. It entail to higher firmness of modified starch gel. The current study showed that the remarkable changes formed by hydrothermal modifications increased the industrial acceptance of kithul starch.

9.
Food Chem ; 294: 194-202, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126453

RESUMO

The changes in physico-chemical and rheological properties of kithul starch by the impact of energetic neutral nitrogen atoms produced by the glow discharge air plasma with novel technique were analysed. Here, treatment was carried out at different power levels (5 W & 15 W) and treatment time (30 min & 60 min). Decrease in amylose and moisture content and increase in swelling index and solubility of plasma treated kithul starch were observed. Fourier transform infrared spectra of plasma treated starch showed variation in the peaks corresponding to CH2 and OH groups. Relative crystallinity significantly (p ≤ 0.05) decreased after plasma treatment. Scanning electron microscopy showed severe damages on the starch granular surface by the effect of energetic neutral nitrogen atoms. Pasting properties increased and thermal properties showed significant (p ≤ 0.05) changes after plasma treatment. Storage modulus (G') and loss modulus (G″) reduced at higher levels of plasma power and it indicated to its weak gel formation.


Assuntos
Nitrogênio/química , Gases em Plasma , Amido/química , Arecaceae/química , Arecaceae/metabolismo , Microscopia Eletrônica de Varredura , Reologia , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
10.
Int J Biol Macromol ; 125: 1084-1092, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30579896

RESUMO

The objective of this study was to determine the effect of physical and chemical modifications on the physicochemical and in vitro digestibility of kithul starch. Starch isolated from kithul flour (Caryota urens) was subjected to physical and chemical modifications. The starch modification was verified by the presence of functional groups using Fourier transform Infrared spectral analysis (FT-IR). X-ray Diffraction (XRD) pattern revealed that the kithul starch is A- type and the modifications did not change the crystalline pattern. However, the relative crystallinity showed significant changes. Chemical modifications increased the swelling and solubility. Pasting and thermal parameters of all modified starches showed significant changes as compared to native starch (NS). Acetylated oxidised starch (AOS) showed highest paste viscosities. Higher enthalpy of gelatinization (∆Hgel) and paste viscosity attributed to perfection and ordering of amorphous regions in annealed starch (ANS). All modifications significantly increased the resistant starch (RS) content than native starch (NS), which indicates its lower digestibility. The current study showed the single, dual chemical modifications and annealing, effectively modified the physicochemical and in vitro digestibility of kithul starch.


Assuntos
Arecaceae/química , Farinha/análise , Análise de Alimentos/métodos , Amido/química , Acetilação , Glicosídeo Hidrolases/química , Humanos , Hidrólise , Oxirredução , Caules de Planta/química , Maleabilidade , Amido/análise , Termodinâmica , Viscosidade , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA